Design By:

Design for the Packed Tower *Sample Design*

Fabricated By:

Project Reference #Sample Revision 0

Quantity: Designation Number: End User: Installation Location: Project Specifications: Governing Standards: Vessel Contents: M.A.W.P. M.A.E.W.P. (1) Required

(S.G. = $sg_{pr} = 1.25$ max.)

$$\begin{split} P_i &= 0 \cdot \mathrm{psi}(g) \text{ (internal) at } T_{min} &= 10 \cdot \mathrm{^\circ F} \text{ to } T_{max} &= 180 \cdot \mathrm{^\circ F} \\ P_e &= 25 \cdot \mathrm{inWC}(g) \text{ (external) at } T_{min} &= 10 \cdot \mathrm{^\circ F} \text{ to } T_{max} &= 180 \cdot \mathrm{^\circ F} \end{split}$$

14 April 2025

The work contained in this design is copyrighted and confidential material and is limited to the project summarized on this page. Any reuse, recreation, or redistribution of any part of this work to a third-party outside of the purpose of completing this project is prohibited. Finite Composites Consulting does not accept responsible charge and cannot pe liable for equipment beyond the scope of this work.

Last Revision: 4/14/2025

Table of Contents

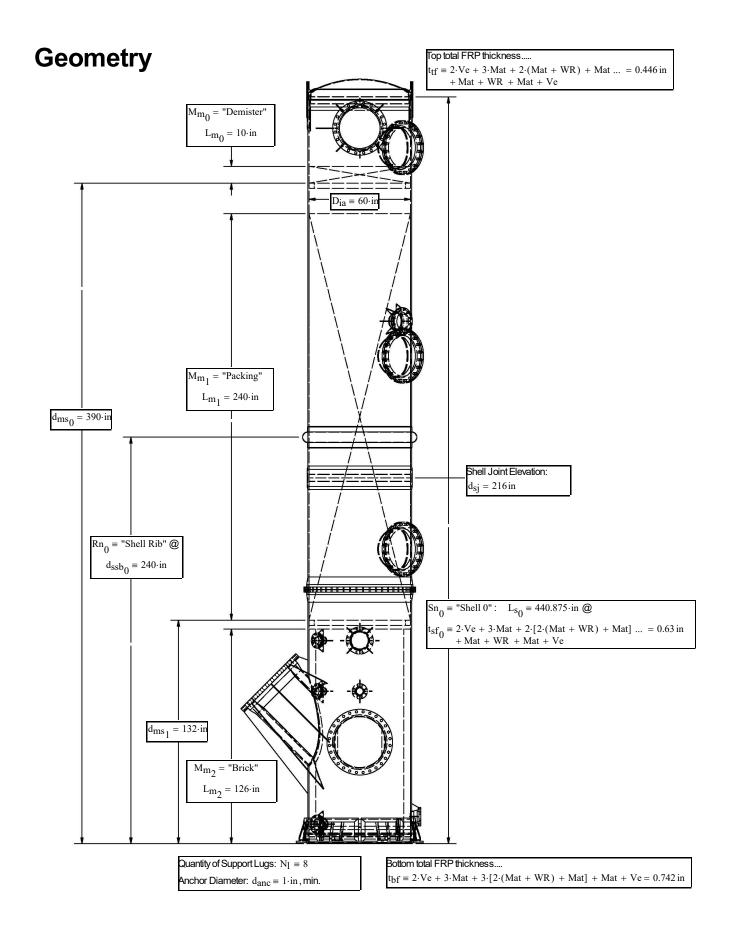
Design Notes	3
Material Selections	3
Design Conditions	4
Geometry	5
Fabrication Details	6
Weights & Capacities	8
Support System Loads Summary	9
Material Properties	10
Results	12
Environmental Loads	28
Top Head	41
Shell	43
Shell Rib	48
Internal Support Ledges	49
Bottom Head	50
Nozzle Installations	51
Hold Down Lugs	53
Lift Lugs	57
Body Flanges	62
External Loads on Nozzles	69

Design Notes

- 1. Material Selections and corrosion barrier requirements are by others.
- 2. Details in design may not be to scale.
- 3. FRP thicknesses are Type II and include non-structural FRP corrosion barriers, unless noted otherwise.
- 4. Anchorage requirements are by others.
- 5. Cast-in-place anchors are not recommended.
- 6. See installation requirements in support lug and lift lug designs.
- Components are not designed for loads resulting from excessive process conditions, unless noted otherwise (e.g., impact loads, significant turbulence, vortexing). Vessels should be filled and emptied in a steady flow state that does not result in significant loads on components.
- 8. It is the end user's responsibility to ensure the vessel does not experience conditions more extreme than what is summarized in the Design Conditions section.
- 9. Lift lugs are not allowed to be used with internals installed (e.g., Demister, Packing, Brick).

Material Selections

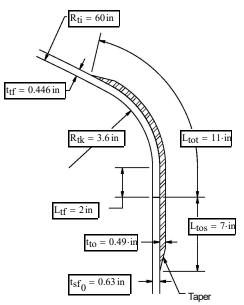
Thermoplastic Liner:	None
FRP Corrosion Barrier	
- Resin:	Derakane 470
- Cure:	CoNap/MEKP or CHP
FRP Structural	
- Resin:	Derakane 470
- Cure:	CoNap/MEKP or CHP
Support System:	FRP
Lift Lugs:	FRP
Gaskets:	Full Face, EPDM

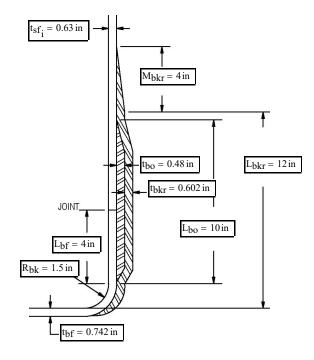

Nomenclature
Veils
$Ve = 0.010 \cdot in - C - Veil$; $Cv = 0.010 \cdot in - Carbon Veil$; $Ne = 0.015 \cdot in - Synthetic Veil (Nexus)$
Chopped Fibers
$Mat = 0.040 \cdot in - 1.5 \text{ oz/sq.ft} Mat$; $Z = 0.020 \cdot in - 3/4 \text{ oz/sq.ft} Mat$; $CS = 0.001 \cdot in - 1 mil Chopped Roving (Chopper Gun)$
Woven/Stitched Fibers
$WR \equiv 0.032 \cdot in - 24 \text{ oz}/sq.yrd$ Woven Roving

FRP corrosion barrier hickness.... $t_{cbf} \equiv 2 \cdot Ve + 3 \cdot Mat = 0.14$ in Portion of FRP corrosion barrier thickness NOT included in structural calculations: $t_{cbn} \equiv t_{cbf} = 0.14$ in Exterior FRP corrosion barrier thickness NOT included in structural calculations: $t_{cbe} \equiv Ve = 0.01$ in

Design	Conditio	ns		De	sign F	actors		
Density of water	Unit definition							
$\rho_{\rm W} \equiv 62.4 \cdot \rm pcf$	inches of wate			Ope load	erating	Tempora loads		stic pility
	$1 \text{ inWC} \equiv 0.0$	361·psi			≡ 10	$f_t \equiv 5$	f _V ≡	
Vessel Contents				10 =	= 10	$I_{t} = J$	IV -	= 5
Contents specific gravity	Density of contents		Packing maximum density					
$sg_{pr} \equiv 1.25$	$\rho_{pr} \equiv \rho_W \cdot sg_{pr} = 78 \cdot j$	pcf	$\rho_{pk} \equiv 25 {\cdot} \text{pcf}$					
Design Pressure	•		D	esign Te	mperatu	ire		
Internal	External			linimum desi mperature	ign		Maximum d	•
$P_i \equiv 0.0001 \cdot psi$	$P_e \equiv 25 \cdot inWC = 0.903 \text{ psi}$			$T_{\min} \equiv {}^{\circ}F(10)$	0) = 10·°F		temperature $T_{max} \equiv {}^{\circ}F$	(180) = 180·°F
Toulload Loads								
Top Head Loads								
<u>Operating</u> Localized	Radius of	Uniform						
vertical Load	vertical load	Live Load	Momenta	at top	Torque.			
$F_{v_0} \equiv 0.1 bf$	$r_{V_0} \equiv 6 \cdot in$	$P_1 \equiv 10 \cdot psf$	$M_a \equiv 0.f$	t∙lbf	$T_a \equiv 0$.	in∙lbf		
Temporary								
Localized vertical Load	Radius of vertical load	Moment at top						
$F_{v_1} \equiv 500 \cdot lbf$	$r_{v_1} \equiv 6 \cdot in$	$M_b \equiv 0 {\cdot} f t {\cdot} l b f$						
Environmental Lo Risk Category (Table 1.5-1)	oads per ASCE 7	-16, Chapter [.]	15 - Nonbuildinç	g Structu	res			
$RC \equiv "IV"$								
Wind								
Basic wind speed (Figure 26.5-1)	Exposure ca (Section 26.		Wind direction factor (Table 26.6-1)	r	Topogra (Section	aphical facto n 26.8.2)	or	Gust factor (Section 26.11.1)
$v_{\rm W} \equiv 120{\cdot}mph$	$C_e \equiv "C"$		$K_d \equiv 0.95$		$K_{zt} \equiv 1$	1.0		$G_{f} \equiv 0.85$
<u>Seismic</u>								
0.2 second spectral response acceleration (Figure 22-1)	. resp	second spectral conse acceleration ure 22-2)		Site Class (Section 1		tra	ng-period nsition period gure 22-14)	
$S_s \equiv 0.065$	s ₁	≡ 0.039		$SC \equiv "D"$		TI	$\equiv 12 \cdot \text{sec}$	
<u>Snow</u>								
Ground snow load (Fig. 7-1)	Exposure fa (Table 7-2)	ctor	Thermal factor (Table 7-3)					
$P_g \equiv 0 \cdot psf$	$C_E \equiv 0.9$		$C_T \equiv 1.2$					
External Flooding								

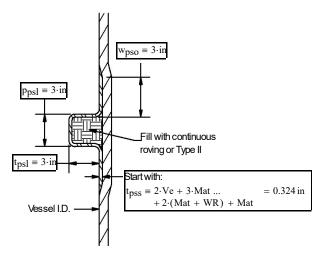
Height above support line....


 $h_b \equiv 0 \cdot in$


Fabrication Details

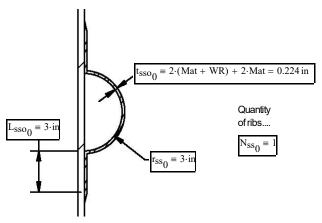
Internal Corrosion Barrier Overlay: $t_{cbo} = 0.14$ in $x w_{cbf} \equiv 6$ ·in wide (centered at joint)

Top Head to Shell

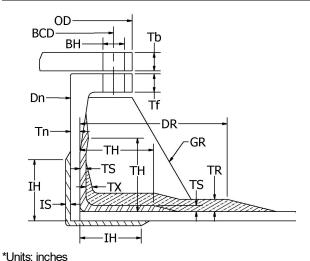


Flat Bottom to Shell

Taper ratio.... $TPR_{\Gamma} \equiv 4:1$ (Length : Thickness) Taper angle with component.... $TPR_a = 14.036 \cdot deg$ $\label{eq:top:tau} \begin{array}{l} \hline \mbox{Head Shapes} \\ \hline \mbox{Top: } T_t \equiv "ASME F \& D" \\ \hline \mbox{Bottom: } T_b \equiv "Flat" \end{array}$


Internal Support Ledge

Shell to Shell



Sample-DTFB_PT.xmcd Last Revision: 4/14/2025

Nozzle Installations & Cutout Reinforcements

Nomenclature

- Mk: Designation
- Dn: Chord length of cutout in the hoop direction and accounting for offset installations
- EL: Installation elevation from bottom tangent
- Tn: Neck thickness
- TS: Attachment overlay thickness
- TH: External Installation length
- IS: Internal installation thickness
- IH: Internal installation length
- TR: Reinforcement pad thickness
- TX: Reinforcement base thickness
- DR: Reinforcement pad length
- GR: Gusset requirement
- N/R: Not required

	("Mk"	"Dn"	"EL"	"Tn"	"TS"	"TH"	"TR"	"TX"	"DR"	"IS"	"IH"	"GR"	
	"A"	36	96	0.69	0.7	6	0.94	0.47	18	0.69	3	"8 HD Plates"	Heavy Duty Plate Gussets (HD): Start with:
	"B1"	10	120	0.38	0.33	3	0.69	0.345	5	0.14	3	"8 HD Plates"	$t_{ps} \equiv 2 \cdot [2 \cdot (Mat + WR) + Mat] = 0.368 \text{ in}$
	"D"	6	16	0.38	0.33	3	0.49	0.245	3	0.14	3	"Required"	Attach with:
	"H1"	30	60	0.375	0.385	4	0.49	0.245	15	0.375	3	"None"	$t_{po} \equiv 2 \cdot [2 \cdot (Mat + WR) + Mat] = 0.368 \text{ in}$
	"K"	4	120	0.31	0.27	3	0.33	0.165	3	0.14	3	"Required"	$x w_{po} \equiv 3 \cdot in$, each way.
	"L"	4	120	0.31	0.27	3	0.33	0.165	3	0.14	3	"Required"	
NS =	"P"	6	11.5	0.38	0.33	3	0.49	0.245	3	0.14	3	"Required"	
	"R"	4	90	0.31	0.27	3	0.33	0.165	3	0.14	3	"Required"	
	"T (new)"	4	90	0.31	0.27	3	0.33	0.165	3	0.14	3	"Required"	
	"B2"	10	308.5	0.38	0.33	3	0.51	0.255	5	0.14	3	"8 HD Plates"	
	"C"	24	422.5	0.69	0.37	3	0.51	0.255	12	0.14	3	"8 HD Plates"	
	"H2"	24	174	0.375	0.32	3	0.49	0.245	12	0.14	3	"None"	
	"H3"	24	288	0.375	0.32	3	0.49	0.245	12	0.14	3	"None"	
	"H5"	24	411	0.375	0.32	3	0.49	0.245	12	0.14	3	"None"	

Weights & Capacities

Empty weight

 $W_{ve} = 4456.468 \cdot lbf$

*Empty weight does not include the demister, packing, and brick. Lift lugs are not allowed to be used after items are installed.

Operating

Contents height above bottom tangent....

 $H_{po} \equiv 96 \cdot in$

Capacity...

 $V_{VO} = 1165.955$ gal

Weight of vessel with product + miscellaneous items supported by vessel....

 $W_{VO} = 44431.457 \cdot lbf$

Miscellaneous items....

	("Demister"		1
MiscI =	"Packing"	9817.477	·lbf
	"Brick"	17000)

<u>Design</u>

Contents height above bottom tangent....

 $\mathrm{H}_{pd}\equiv \sum \mathrm{L}_{s}=440.875\,\mathrm{in}$

Capacity...

Weight of vessel with product

$$W_{vd} = 60629.411 \cdot lbt$$

Weight of vessel with water

 $W_{VW} = 49394.823 \cdot lbf$

Loads Acting on Support System

1. Units are in pounds ($u_f \equiv lbf$), and foot-pounds ($u_m \equiv ft \cdot lbf$), unless noted otherwise.

Unfactored Loads

	"Load"	"Shear"	"Moment"	"Uplift"
	"Dead (Min.)"	0	0	-4309
	"Dead (Max.)"	0	0	-32126
SSL =	"Dead (Operating)"	0	0	-15126
55L =	"Live"	0	0	1
	"Wind"	4812	86935	878
	"Seismic"	1467	15209	394
	"Flooding"	0	0	0)

Load Combinations (Factored)

- 1. Load combinations are provided as a courtesy and may not be properly factored to design items outside of the scope of this design. Load combinations used to design structures, foundations, anchorage and other items associated with this equipment should be determined by the engineer responsible for the respective design.
- 2. Loads have been factored and combined per ASCE 7.
- 3. Loads do not include seismic overstrength factor.

for Strength Design (LRFD)

Combined Loads on Support System

	"Load Case"	"Shear"	"Moment"	"Uplift"
	"Live"	0	0	0
AN _{2.3} =	"Wind"	4812	86935	0
	"Seismic"	1467	15209	0
	"Flooding"	0	0	0)

for Allowable Stress Design (ASD)

Combined Loads on Support System

	"Load Case"	"Shear"	"Moment"	"Uplift"
	"Live"	0	0	0
AN _{2.4} =	"Wind"	2887	52161	0
	"Seismic"	1027	10646	0
	"Flooding"	0	0	0)

Governing Loads Resisted by One Lug

	("Load Case"	"Shear"	"Uplift"
	"Live"	0	0
Lug _{2.3} =	"Wind"	602	8109
	"Seismic"	184	0
	"Flooding"	0	0)

Governing Loads Resisted by One Lug

	"Load Case"	"Shear"	"Uplift"	٦
	"Live"	0	0	
Lug _{2.4} =	"Wind"	361	4833	
	"Seismic"	129	0	
	"Flooding"	0	0)	

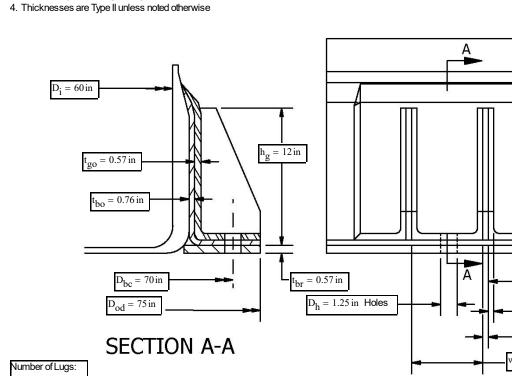
Base Hold Down - Single Ring

Notes:

1. Anchors & foundation designs by others.

2. Fill with grout under baseplate after vessel is filled.

Hand tighten nut + 1/4 turn after installation.
Nuts may need re-tightening after vessel is put into service.

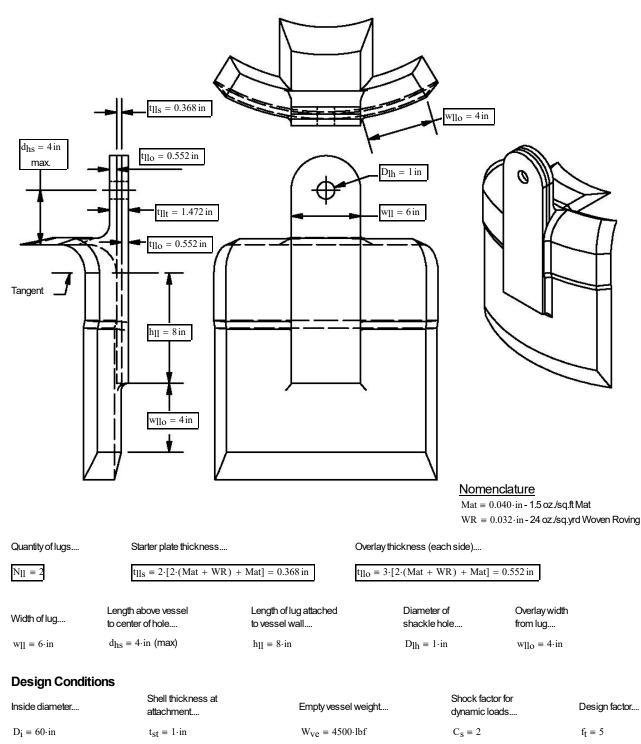

Nomenclature

$$\label{eq:Mat} \begin{split} Mat &\equiv 0.040 \cdot in \text{--} 1.5 \, \text{oz./sq.ft} \, \text{Mat} \\ WR &\equiv 0.035 \cdot in \text{--} 24 \, \text{oz./sq.yrd} \, \text{Woven Roving} \end{split}$$

 $w_{ov} = 6 in$

= 0.57 in= 0.38 in

= 6 in

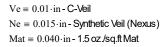


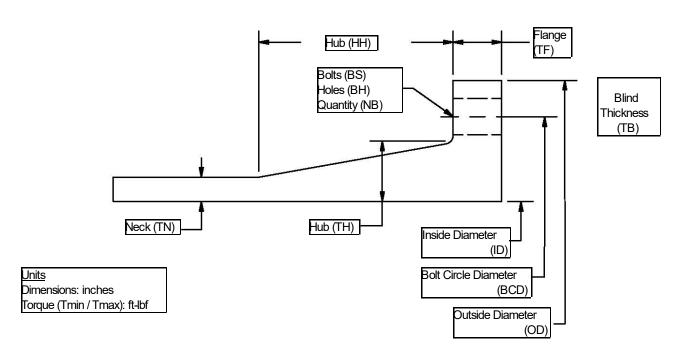
$N_{lug} \equiv 8$						
Base thickness		Base outside overlay	<i></i>	Ring tota thicknes		
$t_{br} \equiv 3 \cdot [2 \cdot (Mat + WR)]$) + Mat] = 0.57 in	$t_{bo} \equiv 4 \cdot [2 \cdot (Mat + Yat)]$	WR) + Mat] = 0.76 in	t _r = 1.3	33 in	
Gusset starter plate thickness		Gusset overlay thickness		Gusset thicknes		
$t_{gs} \equiv 2 \cdot [2 \cdot (Mat + WR)]$) + Mat] = 0.38 in	$t_{go} \equiv 3 \cdot [2 \cdot (Mat + Y)]$	WR) + Mat] = 0.57 in	t _g = 1.5	52 in $w_{ov} \equiv 6 \cdot in$	
Bolt circle diameter	Base OD	Gusset height	Gusset width	Anchor hole diameter	Washer diameter	
$D_{bc} \equiv 70 \cdot in \text{ (max)}$	$D_{od} \equiv D_{bc} + 5 \cdot in = 75 in$	$h_g = 12 \cdot in$	$w_g \equiv 6 \cdot in$	$D_h \equiv 1.25 \cdot in$	$D_{W} \equiv 2 \cdot in$	

Design for FRP Lift Lugs

Notes:

1. Thicknesses are Type II, unless noted otherwise.




FRP Body Flange Design

Design & Fabrication Notes:

1. Thicknesses include non-structural FRP corrosion barriers.

Nomenclature

FG -	("ID"	"Rating (psi)"	"OD"	"BCD"	"BH"	"BS"	"NB"	"TN"	"TF"	"TH"	"HH"	"Const."	"Tmin"	"Tmax"
г G =	60	0.5	66	64.5	0.625	0.5	52	0.63	1.5	1.31	4.08	"Type II"	9	15)

Gasket

 $m_g \equiv 1.0$

Gasket factor....

Gasket seating stress

 $y_g \equiv 100 \cdot psi$

Nut or friction factor for well lubricated studs....

 $C_{ff} \equiv 0.15$

Bolts

Allowable bolt

tensile stress

 $\sigma_b \equiv 18.8 \cdot ksi$

Design for Nozzles Supporting External Loads

Geometry

Nomenclature

 $Ve \equiv 0.010 \cdot in - C-Veil$ $Ne \equiv 0.015 \cdot in$ - Synthetic Veil (Nexus) $Mat \equiv 0.04 \cdot in \text{--} 1.5 \, \text{oz./sq.ft} \, \text{Mat}$

- 1. Units are in inches ($u_d \equiv in$).
- 2. Thicknesses are total FRP.

	"Mark"	"Size"	"Gusseting"	"Elevation"	"Neck Length"	"Neck th'k"	"Shell Curvature"	"Shell th'k"	"Reinf. Pad th'k"
	"A"	36	"8 HD Plates"	96.	24.	0.69	30.	0.63	0.93
	"B1"	10	"8 HD Plates"	120.	6.	0.38	30.	0.63	0.68
	"D"	6	"Required"	16.	6.	0.38	30.	0.63	0.38
	"K"	4	"Required"	120.	6.	0.31	30.	0.63	0.25
$N_Z \equiv$	"L"	4	"Required"	120.	6.	0.31	30.	0.63	0.25
	"P"	6	"Required"	11.5	6.	0.38	30.	0.63	0.38
	"R"	4	"Required"	90.	6.	0.31	30.	0.63	0.25
	"T (new)"	4	"Required"	90.	6.	0.31	30.	0.63	0.25
	"B2"	10	"8 HD Plates"	308.5	6.	0.38	30.	0.63	0.5
	"C"	24	"8 HD Plates"	422.5	6.	0.69	30.	0.63	0.5

External Loads

1. Loads are reported at the: $R_r \equiv$ "Nozzle Attachment".

2. Loads are assumed to be static, combined, and temporary (Design factor: $f_d = 5$)

3. Units are in pounds (u_{f} = lbf), and foot-pounds (u_{m} = $\mathrm{in}\cdot\mathrm{lbf}$), unless noted otherwise.

1	("Mark"	"Size (in)"	"Radial Out"	"Radial In"	"Tan. Shear"	"Long. Shear"	"Torque"	"Tan. Moment"	"Long. Moment"
	"A"	36	1124	1124	1376	1376	135239	95676	95676
	"B1"	10	544	544	665	665	33810	23897	23897
	"D"	6	339	339	416	416	14427	10178	10178
	"K"	4	193	193	236	236	5399	3806	3806
N _e ≡	"L"	4	193	193	236	236	5399	3806	3806
	"P"	6	339	339	416	416	14427	10178	10178
	"R"	4	193	193	236	236	5399	3806	3806
	"T (new)"	4	193	193	236	236	5399	3806	3806
	"B2"	10	544	544	665	665	33810	23897	23897
ţ	"C"	24	1124	1124	1376	1376	135239	95676	95676)

Design Conditions

Portion of FRP corrosion barrier thickness NOT included in structural calculations: $t_{cbn} \equiv 2 \cdot Ve + 3 \cdot Mat = 0.14$ in		Internal design pressure	Specific gravity of product	Sidewall length	Operating liquid level
		$P_i \equiv 0 \cdot psi$	$sg_p \equiv 1.0$	$L_{tt} \equiv 300 \cdot in$	$H_{po} \equiv 288 \cdot in$
<u>Material F</u>	Properties				
Sidewall axial strength	Sidewall hoop strength	Sidewall shear strength	End ultimate strength	End shear strength	Secondary bond peel strength
$\sigma_{\rm atc} \equiv 15 \cdot \rm ksi$	$\sigma_{\rm htc} \equiv 25 \cdot \rm ksi$	$\sigma_{LTc} \equiv 10 \cdot ksi$	$\sigma_{ate} \equiv 17 \cdot ksi$	$\sigma_{LTe} \equiv 9 \cdot ksi$	$\sigma_p \equiv 500 \cdot \frac{lbf}{in}$

Sample-Nozzles_ExtLds.xmcd Last Revision: 1/14/2025

Copyright © all rights reserved Finite Composites Consulting

Executive Profile

I am a Professional Engineer, licensed in 40 States and have over 17 years of experience focused in the design and manufacturing of composite industrial equipment (e.g. Storage Tanks, Scrubbers, Pressure Vessels, Pressure Pipe, & Duct). My expertise includes the design of fiberglass and thermoplastic lined fiberglass "dual laminate" containment systems.

Design Capabilities

I am proficient in the following industry preferred platforms for design and stress analysis:

- Finite Element Analysis (FEA) powered by Autodesk Inventor
- Laminate design analysis powered Trilam II
- > Pipe Stress Analysis powered by Caesar II
- Customized calculation-based designs using Mathcad 15

Active Memberships

- > ASME BPV Section X Subcommittee
- ► ASME RTP-1 Subgroup on Fabrication
- ➤ ASME NPPS SC-FRP Subgroup on Design
- > Dual Laminate Fabrication Association

Compliance with Leading Industry Standards

- ASME RTP-1 Fiber Reinforced Plastic Corrosion-Resistant Equipment
- ASME Section X Fiber Reinforced Plastic Pressure Vessels
- ASTM D3299 Filament-Wound Corrosion Resistant Tanks
- ASTM D4097 Contact-Molded Corrosion Resistant Tanks
- API 12P Fiberglass Reinforced Plastic Tanks
- ASME B31.3 Nonmetallic Pressure Piping Systems (NPPS)
- ASME NM.2 Glass-Fiber-Reinforced Thermosetting-Resin Piping Systems
- AWWA M45 Fiberglass Pipe Design
- ASCE/SEI 7 Minimum Design Loads for Buildings & Other Structures

*I am a recognized Qualified Designer where required by a given Standard.

Find out more at: www.FiniteCC.com

Steve Wagner, PE 248.808.3283 Steve@FiniteCC.com FiniteCC.com